Software operation instructions

1. Open the TD-4000 configuration software through the start menu shortcut or desktop shortcut. Right-click the serial port on the left side of the software and select Refresh. The software will automatically search for the serial port on the computer and display the serial port number on the interface;

2. Click the serial port number connected to the module with the left mouse button. There are multiple function areas in the pop-up interface. If the software pops up the prompt box that the serial port cannot be connected, please check whether the serial port is normal or occupied by other software;

(1)**The communication configuration** is used to set the communication timeout and communication interval of the upper computer. The communication imeout refers to the maximum time for the software to wait for the module to return data after sending the command. If the software fails to receive the returned data within this time, it will be deemed that the communication failed. The communication interval refers to the time for the software to send the next command after the software completes sending the command. After entering the value to be set, click Apply;

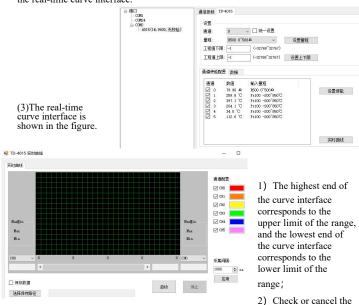
(2)**The module search** is used to search the module information (device model, communication address, baud rate, and verification method). The one-key search is the software sending the universal search command to the module (the module firmware version must be B0.01 or above, and only one module can be connected on the same serial port). This function can directly obtain the module information, Start search is to poll the search module information from the start address (all firmware versions are supported, and multiple modules with different communication addresses can be connected on the same serial port), and automatically stop when the search address is 255. Stop search is to stop the search in advance during the polling search process. The searched module information will be displayed below the serial port number, as shown in the figure above. The information contents are: device model, communication address, baud rate Verification method.

(3)**The new module** is used to manually add module information. If the information of the module has been learned in advance, select the known module model in the module model, select the known module address in the address, select the known module baud rate in the baud rate, select the known module verification method, click the new module, and the new information will be displayed under the serial port number;

3. After the software obtains the module information, directly click the module information software with the left mouse button to automatically connect the module and display the communication parameter page and module function page;

(1)**The communication parameter page** is used to view the current address, baud rate, verification method and firmware version of the module. At the same time, you can also set the address, baud rate and verification method of the module. In the communication parameter setting area, select the address to be modified, baud rate and verification method, and then click the setting button. If the setting is successful, the software will pop up a prompt box. At this time, you need to search the module again, If the modification failure prompt box pops up, check whether there is a fault.

#E□ - Cree: - Cre	通信部数 10-4015 78-4015 当前部数
	1 (十进制) 01 (十六进制)
	波特车: 9600
	校验方式: 无校验
	固件版本: B0.01
	通讯使教设置 地址: ⅠⅠ


(2)Page TD-4015S is used to view the measured values and configuration parameters of the module and modify the configuration parameters.

1) **Range configuration**, Select the channel you want to configure in the channel drop-down box, select the range you want to configure in the range drop-down box, and then click Set Range. If you want all channels to be set to the same range, you can check the unified setting and then click Set Range.

2) Engineering value upper and lower limit configuration, Select the channel you want to configure in the channel drop-down box, enter the upper and lower limits of the engineering value to be configured in the input box of the upper and lower limits of the engineering value, and click Set Upper and Lower Limits. If you want all channels to be set to the same upper and lower limits of the engineering value, you can check the unified setting, and then click Set Upper and Lower Limits.

3) Set Enable, Select the enabling status of the corresponding channel in the selection box on the channel enabling configuration page (check to enable, uncheck to disable), and then click Set Enable.

 Real-time curve, Click the real-time curve button and the software will pop up the real-time curve interface.

channel configuration selection box to select whether to display the curve of the corresponding channel;

3) Check or cancel the channel configuration selection box to select whether to

display the curve of the corresponding channel;

4) Select the channel drop-down box on the left and right sides of the interface to

display the measured value and extreme value of the corresponding channel;

- 5) Enter the acquisition interval and click Apply to set the period for reading data;
- Check the Save Data box to save the channel measurement data as a. CSV file (Excel can be opened);
- 7) Click the Select Save Path button to reselect the file name and path to save;
- 8) Click the start button, and the software starts to record data;
- 9) Click the stop button, and the software stops recording data;

10) In the stop state, slide the scroll bar under the curve to view the recorded data;FAQ

1, Q: The measurement is normal only when one channel is connected to the signal, and the measurement is abnormal after the signal of other channels is connected? A: The connected sensors have leakage. Please connect the sensors one by one. If the data is abnormal after connecting a sensor, it indicates that the sensor has leakage. Please eliminate the leakage of this sensor.

2. Q: When inputting a signal larger than half of the range during programming, the data read is abnormal?

A: The programming system used parses unsigned data into signed data. It is recommended to read the measured original value.

TD-4015S

8-Channel Thermal Resistance Acquisition Module Instrations(Usage)

!∕ NOTE

• Please check the product packaging, product label model, specifications are consistent with the order contract;

- Please read this manual carefully before installation and use. If you have any questions, please contact our technical support hotline;
- •The product need to installed in a safe place;
- 24V DC power supply for instrument, 220V AC power supply is strictly prohibited;
- It is strictly prohibited to disassemble and assemble the instrument without permission to prevent instrument failure or failure.
- The Company reserves the right to change the product without prior notice to the user. In case of any discrepancy between the contents of the instructions and the website, samples and other materials, the instructions shall prevail.

•Please scan the code for more product information and configuration software.

Micro cloud

Baidu cloud disk

Profile

TD-4015S supports 8-channel three-wire input of PT100, PT1000, Cu50, Cu100, Ge53, BA1, BA2, R5000 and R500 ranges. The AD acquisition part is photoelectric isolated, and the application layer adopts the standard MODBUS-RTU protocol, which is applicable to a variety of industrial occasions and automation systems. It is convenient to communicate with the host computer, and can realize rapid networking and build monitoring system.

mobe compe	nost compater, and can realize rapid networking and cand monitoring system.									
PT100	-200~850°C	CU100	-50~150°C	BA2	-200~650°C					
PT1000	-200~850°C	Ge53	-50~150°C	R5000	0~5000Ω					
CU50	-50~150°C	BA1	-200~650°C	R500	$0\sim 500\Omega$					

Main Technical Parameters

Number of Channels: 8

Input range:PT100、PT1000、Cu50、Cu100、Ge53、BA1、BA2、R5000 and R500

Input method:Eight-channel three-wire thermistor input

Sampling frequency:≤10Hz,(Channel sampling rate=total sampling rate/number of enabled channels, 1.67Hz when 6 channels are fully enabled, there is a filtering algorithm inside the module, and there is a delay in data update)

Accuracy class: $\leq 0.1\%\,$ (Accuracy does not include lead error)

Excitation current: Double 250uA (Output by RTD+and RTD - respectively)

Output

Signal type: RS-485 digital signal

Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps Verification method: no verification, odd verification or even verification

Data bits: 8bit Stop bit: 1bit

Communication output protocol:MODBUS-RTU Communication distance:1200m

General Technical Parameters

Power Supply: DC24V, Voltage Range: DC 9~30V

Current Consumption: <1.5W @DC 24V

Dielectric Strength: 1500V DC/1min (between input and output)

Insulation Resistance: $\geq 100M\Omega$ (between input and output)

Electromagnetic Compatibility: In accord with GB/T18268(IEC61326-1) Suit for Field Equipment: Configuration software, PLC, touch screen, computer and other equipment supporting MODBUS - RTU protocol

Indicator status

1. The indicator light is always on after power-on. If it is not on, it indicates

power failure or poor contact;

2、 The indicator flashes during normal communication;

 3_{x} When there is no communication, the indicator lamp flashes, indicating that the module is faulty.

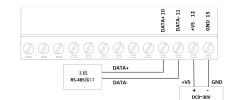
Default factory parameters

Device address: 1 Baud rate: 9600bps Verification method: no verification

Data bits: 8bit Stop bit: 1bit

Channel range: all are set to PT100 range, and the acquisition status is enabled; Use environment

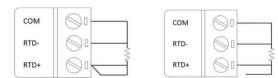
(1) The surrounding environment shall be free of strong vibration, impact, large current, spark and other electromagnetic induction effects. The air shall be free of corrosive media for chromium, nickel and silver coatings, and shall not contain flammable and explosive substances;


(2) Continuous operating temperature: -40°C~ +85°C;

(3) Relative humidity : 10 % \sim 90 % R H(No condensation);

Wiring instructions

Communication and power wiring diagram:


The RS485 communication line is connected by hand. If star connection is required, please add a splitter. The terminal resistance Rt is added at both ends of the communication line as required.

Input signal wiring diagram:

Two-wire heating resistance wiring Three-wire heating resistance wiring

Four-wire heating resistance wiring 1 Four-wire heating resistance wiring 2

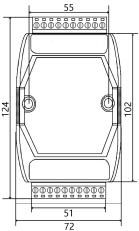
PS:

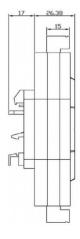
⁽²⁾Three-wire thermal resistance needs to ensure that the resistance values of the three leads are consistent, otherwise the error will increase;

③The lead of four-wire heating resistor is relatively short, so the four-wire heating resistor wiring method 1 is used for wiring;

(4) If the lead resistance of the four-wire heating resistor is consistent, the four-wire heating resistor wiring mode 2 shall be used for wiring;

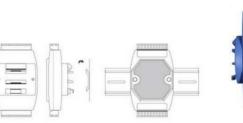
(5)If the lead of four-wire thermal resistor is long and the lead resistance is inconsistent, the error will increase;

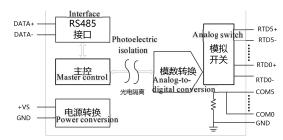

Connecting terminal description


Terminal	Terminal	Text
number	name	description
number		
1	COM	RTD common side
2	RTD5-	RTD 5 input negative terminal
3	RTD5+	RTD 5 input positive end
4	RTD6-	RTD 6 input negative terminal
5	RTD6+	RTD 6 input positive end
6	COM	RTD common side
7	RTD7-	RTD 7 input negative terminal
8	RTD7+	RTD 7 input positive end
9	NC	Empty end
10	DATA+	RS-485 Positive end of communication
		interface
11	DATA-	RS-485 Negative terminal of communication interface
12	+VS	Positive terminal of external power supply
		(9~30V)
13	GND	Negative terminal of external power supply
		(grounding)
14	RTD0+	RTD 0 input positive end
15	RTD0-	RTD 0 input negative terminal
16	COM	RTD common side
17	RTD1+	RTD 1 input positive end
18	RTD1-	RTD 1 input negative terminal

RTD 2 input positive end RTD2+ 19 20 RTD 2 input negative terminal RTD2-21 COM RTD common side 22 23 RTD3+ RTD 3 input positive end RTD 3 input negative terminal RTD3-24 25 26 COM RTD common side RTD 4 input positive end RTD4+ RTD4-RTD 4 input negative terminal

PS: COM0~COM5 Connect together internally


Overall Dimension


Install

TD-4015S adopts DIN35mm guide rail installation mode. The guide rail shall comply with the installation dimension specification of TH35-7.5 guide rail in the national standard GB/T19334-2003. This standard is equivalent to the international standard of IEC 60715-1981. The installation must be stable and firm.

DIN-Rail Mounting Internal structure

Overlay installation

TD-4015 Instrations V1.6

Signal Communication Point Table

Point Table	Attribute	Function	Value range and description
40001			0~65535 corresponds to the lower
40002			limit and upper limit of the input range,
40003	16-bit unsigned	40001~40008 corresponding Measured digital	For example, 4~20mA range: 0 corresponds to 4mA, 65535 corresponds to 20mA, in a linear
40004	read-only register	value of channel 0 to channel 5	relationship, Some PLCs or software do not
40005			support 16-bit unsigned format. It is recommended to read the measured
40006			original value.
40009			-32768~32767, Correspondence with measured value:
40010	16-bit unsigned		PT100 temperature value 10X PT1000 temperature value 10X
40011	read-only register. Only	40009~40016 corresponds to the measured original	CU50 temperature value 100X CU100 temperature value 100X GE53 temperature value 100X
40012	firmware version: B0.01 and	value of channel 0~5	BA1 temperature value 10X BA2 temperature value 10X R5000 Resistance value 1X
40013	above is valid		R500 Resistance value 10X For example, if the value read by PT100 range is - 199, the actual
40014			measured temperature value is - 19.9 °C.
40017	16-bit		-32768~32767
40018	unsigned read-only	40017~40022	Related to the upper and lower limit of engineering value and measured
40019	register. Only	corresponds to the	value.
40020	firmware	measured engineering value	For example: R500 range, the upper limit of engineering value is 1000,
40021	version: B0.01 and above is	of channel 0~5	The lower limit of the engineering value is 0. When the resistance of
40022	valid		50 Ω is connected, the engineering value is 100
40101		Channel 0 Lower limit of	
40102		engineering value Channel 0 Upper limit of engineering value	-32768~32767,
40103	16-bit	Channel 1 Lower limit of engineering value	The lower limit of engineering value corresponds to the lower limit
40104	unsigned Read and write	Channel 1 Upper limit of engineering value	of measuring range. Engineering value upper limit corresponds to range upper limit
40105	register. Power-off storage	Channel 2 Lower limit of	如: For example:
40106	Firmware version only:	engineering value Channel 2 Upper limit of	R500 range, range 0 ~500 Ω. If the sensor range is 0 ~10m, the lower limit of the engineering value
40107	B0.01 and above are	engineering value Channel 3 Lower limit of	can be set as 0, and the upper limit of the engineering value can be set as 10000. When the engineering
40108	valid	engineering value Channel 3 Upper limit of	value of the corresponding channel is read as 5999, the actual value is 5.999m.
40109		engineering value Channel 4 Lower limit of	5.777m.
40110		engineering value Channel 4	

		Upper limit of engineering value			
40111		Channel 5			
		Lower limit of			
		engineering value			
40112		Channel 5			
		Upper limit of			
		engineering value			
40201			PT100 Code is 0x0050;		
40202			PT1000 Code is 0x0051;		
	16-bit read	40201~40206	CU50 Code is 0x0052;		
40203	and write	Input range	CU100 Code is 0x0053;		
40204	register,Pow	corresponding to	GE53 Code is 0x0054;		
40205	er-off	channel 0 to	BA1 Code is 0x0055;		
40206	storage	channel 5	BA2 Code is 0x0056;		
40206			R5000 Code is 0x0057;		
			R500 Code is 0x0058;		
Point	Attribute	Function	Value range and description		
Table			C 1		
40211	16-bit	Module name1	0X4015		
40212	40212 read-only Module name2		0X0000		
40213			0X0000~0XFFFF		
		Equipment	0X0001~0X00FF		
40215		communication	Indicates the address of the		
		address	device		
	16-bit read		0: 1200bps 1: 2400bps		
	and write		· ·		
40216	register	Baud rate	1 1		
1	1 1		4. 100001 5. 004001		

Point	Attribute	Function	Value range and description		
Table					
40211	16-bit	Module name1	0X4015		
40212	read-only	Module name2	0X0000		
40213	register	Firmware version	0X0000~0XFFFF		
40215		Equipment communication address	0X0001~0X00FF Indicates the address of the device		
40216	16-bit read and write register power-down storage	Baud rate	0: 1200bps 1: 2400bps 2: 4800bps 3: 9600bps 4: 19200bps 5: 38400bps 6: 57600bps 7: 115200bps		
40217		Verification method	0: No verification 1: Odd check 2: even parity check		
Point		Register function	Value range		

Point		Register f	unction	Value range
Table		description		_
00201		Channel	0	
		disconnection	1	
00202		Channel	1	
		disconnection	ı	
00203	Single	Channel	2	When value is 1, thermal resistance
	Bit Read	disconnection	ı	is disconnection; When value is 0,
00204	Only Coil	Channel	3	thermal resistance is normal.
	Only Con	disconnection	ı	thermal resistance is normal.
00205		Channel	4	
		disconnection	ı	
00206		Channel	5	
		disconnection	ı	

Calculation formula of digital value

Measurement range	Calculation formula (D is digital value, 16-bit
	unsigned integer)
PT100	D / 65535 * 1050 - 200 (°C)
PT1000	D / 65535 * 1050 - 200 (°C)
Cu50	D / 65535 * 200 - 50 (°C)
Cu100	D / 65535 * 200 - 50 (°C)
Ge53	D / 65535 * 200 - 50 (°C)
BA1	D / 65535 * 850 - 200 (°C)
BA2	D / 65535 * 850 - 200 (°C)
R5000	D / 65535 * 5000 (Ω)
R500	D / 65535 * 500 (Ω)

TD-4015 Instrations V1.6

TD-4015S 8-channel Thermal Resistance Acquisition Module Instrations(Programming)

NOTICE

- Please check the product packaging, product label model, specifications are consistent with the order contract;
- Please read this manual carefully before installation and use. If you have any questions, please contact our technical support hotline;
- The product need to installed in a safe place;

• 24V DC power supply for instrument, 220V AC power supply is strictly prohibited;

- It is strictly prohibited to disassemble and assemble the instrument without permission to prevent instrument failure or failure.
- The Company reserves the right to change the product without prior notice to the user. In case of any discrepancy between the contents of the instructions and the website, samples and other materials, the instructions shall prevail.
- Please scan the code for more product information and configuration software

Micro cloud

Baidu cloud disk

The MODBUS-RTU protocol provides multiple function codes to achieve different functions. TD-4000 series products only support some of the function codes. This manual only explains the function codes used. The function codes supported by TD-4000 series products are: 0X01, 0X03, 0X04, 0X06, 0X05, 0X0F, 0X10, of which TD-4015 does not support function codes 0X05 and 0X0F. The corresponding point table addresses and function descriptions of the function codes are shown in the following table:

are billo will ill i	ie shown in the following table.						
Function	symmetric	Function description					
code	points address	_					
0X01	0XXXX	Read the status of multiple coils (single bit					
		data)					
0X05	0XXXX	Write single coil (single bit data) status (0X0F can be replaced)					
0X0F	0XXXX	Write multiple coils (single bit data) status					
0X03	4XXXX	Read the value of multiple registers					
0X04	4XXXX	Read the value of multiple registers (0X03					
		can be replaced)					
0X06	4XXXX	Write a single register value (0X10 can be					
		replaced)					
0X10	4XXXX	Write multiple register values					

Function code 0X01

1. The structure of the request message sent by the host, in which the starting address and the number of coils are represented by the large end. The starting address needs to be reduced by one from the point table address, for example, the address of 00016 is 0X000F,

Description	Number of bytes	Value range
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X01
Start address	2 byte	0X0000~0XFFFF
Number of coils	2 byte	0X0001~0X0040
CRC verification	2 byte	0X0000~0XFFFF

2、 The slave returns the message structure. Each bit of the coil status data represents a coil status 1=ON and 0=OFF, and the LSB (least significant bit) of the first data byte represents the coil status of the starting address. The other coils are analogized, until the highest bit of this byte, and in the order of low to high in the subsequent bytes.

Description		Number	of	Value range
_		bytes		-
Device addre	ess	1 byte		Address of module
Function cod	le	1 byte		0X01
Number o	f coil	1 byte		N(Notes)
status bytes		-		
Coil status		N byte		Big end mode, high byte first
CRC verifica	ation	2 byte		0X0000~0XFFFF

NOTE: N=Coil quantity / 8, If the remainder is not equal to 0, N=Coil quantity / 8 + 1

3, EG, Read the 24 coil states of 00001~00024 of the module with address 1,

Host sends message: (The message is in hexadecimal format)

	01	01	00	00	00	17	3C	00	
	Mod ule addi ess	tion		address	Number of coils high byte	of coils	CRC verific ation	CRC verific ation	
	Slave return message: (The message is in hexadecimal format)								
()1	01	03	01	03	07	2C	BC	
			NY 4	- 14	G '1	an 14	0.000		

01	01	03	01	03	07	2C	BC
Mod	Fun	Number	Coil	Coil	Coil	CRC	CRC
ule	ctio	of coil	status	status	status	verifi	verif
addr	n	status	byte 0	byte 1	byte 2	cation	icati
ess	code	bytes	2	2	2		on

The coil status byte of 3 bytes in total in the message returned from the slave:

Byte **0**: 0X01 binary system is 0000 0001, from right to left (That is, from the lowest byte to the highest byte), Representative 00001~00008 status is ON, OFF,

OFF, OFF, OFF, OFF, OFF, OFF,

Function code 0X0F

1. The structure of the request message sent by the host, in which the starting address and the number of registers are expressed in the large-end way, and the

starting address needs to be reduced by one point table address. For example, the address of 00008 is 0X0007, each bit of the coil status data represents a coil status I=ON, 0=OFF, and the LSB (least significant bit) of the first data byte represents the coil status of the starting address. The other coils are analogized, until the highest bit of this byte, and in the order of low to high in the subsequent bytes.

Description	Number of	Value range
_	bytes	
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X0F
Start address	2 bytes	0X0000~0XFFFF
Number of coils	2 bytes	0X0001~0X0040
Number of coil	1 byte	N (Notes)
status bytes		
Coil status	Nx byte	
CRCverification	2 bytes	0X0000~0XFFFF

Note: N=Number of coils/8, If the remainder is not equal to 0, N=Number of coils/8 + 1

2. The message structure returned by the slave is equivalent to the first 6 bytes

of the host message plus 2 bytes of CRC verification;

Description	Number of	Value range
_	bytes	-
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X0F
Start address	2 bytes	0X0000~0XFFFF
Number of coils	2 bytes	0X0001~0X0040
CRCverification	2 bytes	0X0000~0XFFFF

3, EG, Set the status of 8 coils in modules 00017~00024 with address 1 to:

ON, OFF, ON, OFF, OFF, OFF, OFF;

Host sends message: (The message is in hexadecimal format)

		8		0			,		
01	0F	00	10	00	08	01	05	FF	55
Mod	Func	Start	Start	Numb	Numb	Numb	Coil	CRC	CRC
ule	tion			er of	er of	er of	status	verifi	verif
addr	code	high	s low	coils	coils	coil	byte 0	cation	icati
ess		byte	byte	high	low	status			on
				byte	byte	bytes			

Coil status byte 0: 0X05 binary system 0000 0101, from right to left ((That

Slave return message: (The message is in hexadecimal format)

01	0F	00	10	00	08	55	C8
Modu	Funct	Start	Start	Number	Number	CRC	CRC
le	ion	address	address	of coils	of coils	ver	verifi
addre	code	high byte	low byte	high byte	low byte	ific	catio
SS			-		-	ati	n
						on	

Function code 0X03

1. The structure of the request message sent by the host, in which the starting address and the number of registers are represented by the large end. The starting address needs to be removed from the first 4 of the point table address and then subtracted by one for example.address of 40017 is 0X0010

Description	Number of bytes	Value range
Device address	1 byte	0X0001~0X00FF

2

	TD-4015	Instrations	V1.6
--	---------	-------------	------

Function code	1 byte	0X03
Start address	2 bytes	0X0000~0XFFFF
Number of registers	2 bytes	0X0001~0X0040
CRC verification	2 bytes	0X0000~0XFFFF

2、 The slave returns the message structure, and each register occupies 2 bytes. For each register, the first byte is the high byte of the register, and the second byte is the low byte of the register (that is, large-end mode);

Description	Number of	Value range
_	bytes	-
Device address	1 byte	Module address
Function code	1 byte	0X03
Number of register	1 byte	2*N(Notes)
value bytes		
Register value	2*Nx byte	Big end mode, high byte first
CRC verification	2 bytes	0X0000~0XFFFF

Note: N=Number of registers

3, for example, Read the value of two registers from 40009 to 40010 of the

```
module with address 1,
```

	(The message		

01	03	00	08	00	02	45	c9
Mod ule addr ess	Fun ctio n code	Start address high byte	Start address low byte	Number of registers high byte	Number of registers low byte	CR C verif icati on	CR C verif icati on

Slave return message: (The message is in hexadecimal format)

[01	03	04	F1	03	F7	FF	3E	BF
	Mod ule addr ess	Fun ctio n code	Number of register value bytes	Registe r byte 0	Regist er byte 1	Registe r byte 2	Registe r byte 3	CR C verif icati on	CR C verif icati on

The register value of 4 bytes in the message returned by the slave:

Byte 0 and byte 1 are the values of register 40009, hexadecimal representation is 0XF103, conversion to 16-bit unsigned number is 61699, conversion to 16-bit signed number is - 3837, byte 2 and byte 3 are the values of register 40010, hexadecimal representation is 0Xf7ff, conversion to 16-bit unsigned number is 63487, conversion to 16-bit signed number is - 2049,

Function code 0X10

1. The request message structure sent by the host, in which the starting address and the number of registers are expressed in the big-end mode. The starting address needs to be removed from the first 4 of the address of the point table, and then subtracted by one. For example, the address of 40004 is 0X0003, and each register occupies 2 bytes. For each register, the first byte is the high byte of the register, and the second byte is the low byte of the register (i.e., the big-end mode):

the second syste is the form syste of the register (i.e., the sig ond mode);					
Description	Number of	Value range			
_	bytes	-			
Device address	1 byte	0X0001~0X00FF			
Function code	1 byte	0X10			
Start address	2 bytes	0X0000~0XFFFF			
Number of registers	2 bytes	0X0001~0X0040			
Number of register	1 byte	2*N (Notes)			
value bytes	-	2 10 (10003)			
Register value	2*Nx byte	Big end mode, high byte first			
CRC verification	2 bytes	0X0000~0XFFFF			

Note: N=Number of registers

2. The message structure returned by the slave is equivalent to the first 6 bytes of the host message plus 2 bytes of CRC verification;

Description	Number of	Value range		
_	bytes	_		
Device address	1 byte	Module address		
Function code	1 byte	0X10		

Start address	2 bytes	0X0000~0XFFFF
Number of registers	2 bytes	0X0000~0X0040
CRC verification	2 bytes	0X0000~0XFFFF

3, For example, set the value of the two registers of the module 40002~40003 with address 1 to 0XF003 (16-bit unsigned: 65283, 16-bit signed: - 4093), 0X0007 (16-bit unsigned: 7);

Host sends message:

01	10	00	01	00	02	04
Mod	Fun	Start	Start	Number	Number	Number
ule	ctio	address	address	of	of	of
addr	n	high	low byte	registers	registers	register
ess	code	byte	-	high	low byte	value
				byte		bytes

F0	03	00	07	B0	A1	
Number	Number	Number	Number	CR	CR	
of	of	of	of	С	С	
register	register	register	register	verif	verif	
value	value	value	value	icati	icati	
bytes 0	bytes 1	bytes 2	bytes 3	on	on	

Slave return message:

01	10	00	01	00	02	10	08
Mod	Fun	Start	Start	Number	Number	CR	CR
ule	ctio	address	address	of	of	C	C
addr	n	high	low byte	registers	registers	verif	verif
ess	code	byte		high	low byte	icati	icati
		-		byte	-	on	on