Software operation instructions

 Open the TD-4000 configuration software through the start menu shortcut or desktop shortcut. Right-click the serial port on the left side of the software and select Refresh. The software will automatically search for the serial port on the computer and display the serial port number on the interface;

2. Click the serial port number connected to the module with the left mouse button. There are multiple function areas in the pop-up interface. If the software pops up the prompt box that the serial port cannot be connected, please check whether the serial port is normal or occupied by other software;

- (1)The communication configuration is used to set the communication timeout and communication interval of the upper computer. The communication immout refers to the maximum time for the software to wait for the module to return data after sending the command. If the software fails to receive the returned data within this time, it will be deemed that the communication failed. The communication interval refers to the time for the software to send the next command after the software completes sending the command. After entering the value to be set, click Apply;
- (2)The module search is used to search the module information (device model, communication address, baud rate, and verification method). The one-key search is the software sending the universal search command to the module (the module firmware version must be B0.01 or above, and only one module can be connected on the same serial port). This function can directly obtain the module information, Start search is to poll the search module information from the start address (all firmware versions are supported, and multiple modules with different communication addresses can be connected on the same serial port), and automatically stop when the search address is 255. Stop search is to stop the search in advance during the polling search process. The searched module information will be displayed below the serial port number, as shown in the figure above. The information contents are: device model, communication address, baud rate Verification method.
- (3)**The new module** is used to manually add module information. If the information of the module has been learned in advance, select the known module model in the module model, select the known module address in the address, select the known module baud rate in the baud rate, select the known module verification method in the verification method, click the new module, and the new information will be displayed under the serial port number;
- 3. After the software obtains the module information, directly click the module information software with the left mouse button to automatically connect the module and display the communication parameter page and module function page;
- (1)The communication parameter page is used to view the current address, baud rate, verification method and firmware version of the module. At the same time, you can also set the address, baud rate and verification method of the module. In the communication parameter setting area, select the address to be modified, baud rate and verification method, and then click the setting button. If the setting is successful, the software will pop up a prompt box. At this time, you need to search the module again, If the modification failure prompt box pops up, check whether there is a fault.

- (2)Page TD-4024P is used to view the measured values and configuration parameters of the module and modify the configuration parameters.
- 1) Range configuration, Select the channel you want to configure in the channel drop-down box, select the range you want to configure in the range drop-down box, and then click Set Range.
- 2) Output power-on value and output safety value. Select the channel you want to configure in the channel drop-down box, output the power-on value and the expected parameters in the output safety value input box, and then set the output parameter button for the motor. The output power-on value is the value output when the module starts, and the output safety value is the value output when the module is in the timeout state.
- 3) Communication timeout value. Click the Read Timeout Value button to obtain the timeout value of the current module. After entering the expected communication timeout value, click the Set Timeout Value. When the communication timeout value is not 0, when no communication command is received within the module timeout value range, the module is recognized as in the timeout state. At this time, the output channel will output the safe value. When the communication timeout value is 0, the function will fail.
- 4) Set the output value.select the channel you want to configure in the channel drop-down box, then slide the slider in the figure below to the desired output value, and click Set Output Value to set the output value of the channel to the desired value.

TD-4024+ Eight-Channel Analog Quantity Acquisition Module Instrations(Usage

NOTICE

- Please check the product packaging, product label model, specifications are consistent with the order contract:
- Please read this manual carefully before installation and use. If you
 have any questions, please contact our technical support hotline;
- The product need to installed in a safe place;
- 24V DC power supply for instrument, 220V AC power supply is strictly prohibited;
- It is strictly prohibited to disassemble and assemble the instrument without permission to prevent instrument failure or failure.
- The Company reserves the right to change the product without prior notice to the user. In case of any discrepancy between the contents of the instructions and the website, samples and other materials, the instructions shall prevail.
- Please scan the code for more product information and configuration software.

Micro cloud

Baidu cloud disk

Profile

TD-4024 support 0~20mA, 4~20mA , $-10V\sim+10V$, $-20mV\sim+20mA$,0~10V ranges,4-channel differential input. The AD acquisition part is photoelectric isolated, and the application layer adopts the standard MODBUS-RTU protocol, which is applicable to a variety of industrial occasions and automation systems. It is convenient to communicate with the host computer, and can realize rapid networking and build monitoring system.

Main Technical Parameters

Output

Number of Channels: 4

Output range:0~20mA, 4~20mA, -10V~+10V, -20mV~+20mA,0~10V

Output method:4-channel current or voltage input

Sampling frequency:≤100Hz

Accuracy class: ≤ 0.1%

Input load:current $\leq 350\Omega$, voltage $\geq 2K\Omega$

Note:After the module is powered on, it will output the negative value. After the device is started, it will return to normal.

Input

Signal type: RS-485 digital signal

Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps

Verification method: no verification, odd verification or even verification

Data bits: 8bit Stop bit: 1bit

Communication output protocol:MODBUS-RTU

Communication distance:1200m General Technical Parameters

Power Supply: DC24V, Voltage Range: DC 9~30V

Current Consumption: <1.5W @DC 24V

Dielectric Strength:1500V DC/1min (between input and output)

Insulation Resistance: $\geq 100 M\Omega$ (between input and output)

Electromagnetic Compatibility: In accord with GB/T182681(IEC6132-1)

Suit for Field Equipment: Configuration software, PLC, touch screen, computer

and other equipment supporting MODBUS - RTU protocol Indicator status

1. The indicator light is always on after power-on. If it is not on, it indicates power failure or poor contact;

- 2. The indicator flashes during normal communication;
- 3. When there is no communication, the indicator lamp flashes, indicating that the module is faulty.

Default factory parameters

Device address: 1 Baud rate: 9600bps Verification method: no verification

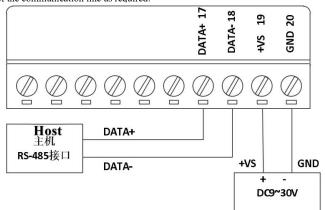
Data bits: 8bit Stop bit: 1bit

Channel range: all are set to 4-40mA range;

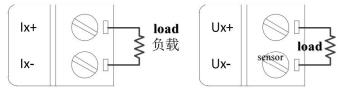
Use environment

- (1) The surrounding environment shall be free of strong vibration, impact, large current, spark and other electromagnetic induction effects. The air shall be free of corrosive media for chromium, nickel and silver coatings, and shall not contain flammable and explosive substances;
- (2) Continuous operating temperature: -40°C~ +85°C;
- (3) Relative humidity: 10 % ~ 90 % R H(No condensation);

Range configuration description


TD-4024 supports four-channel current or voltage output. When switching current or voltage output, the wiring mode needs to be modified. For example, when channel 0 outputs current, the terminal is I0+and I0 -, and the output voltage is, the terminal is U0+and U0-.

■ Wiring instructions


Communication and power wiring diagram:

The RS485 communication line is connected by hand. If star connection is

required, please add a splitter. The terminal resistance Rt is added at both ends of the communication line as required.

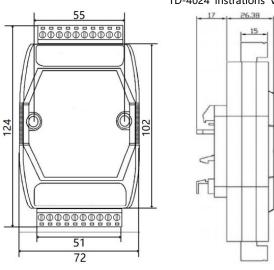
Input signal wiring diagram:

Current output wiring

Voltage output wiring

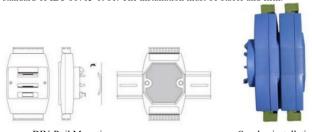
Connecting terminal description

Terminal	Terminal	Text
number	name	description
1	I2+	Channel 2 Current output positive terminal
2	I2-	Channel 2 Current output negative terminal
3	U3+	Channel 3 Voltage output positive terminal
4	U3-	Channel 3 Voltage output negative terminal
5	I3+	Channel 2 Current output positive terminal
6	I3-	Channel 2 current output negative terminal
7	DATA+	RS-485 Positive end of communication interface
8	DATA-	RS-485 Negative terminal of communication interface
9	+VS	Positive terminal of external power supply(9~30V)
10	GND	Negative terminal of external power supply(grounding)
11	U0+	Channel 0 Voltage output positive terminal
12	U0-	Channel 0 Voltage output negative terminal
13	I0+	Channel 0 Current output positive terminal
14	I0-	Channel 0 Current output negative terminal
15	U1+	Channel 1 Voltage output positive terminal
16	U1-	Channel 1 Voltage output negative terminal
17	I1+	Channel 1 Current output positive terminal
18	I1-	Channel 1 Current output negative terminal
19	U2+	Channel 2 Voltage output positive terminal
20	U2-	Channel 2 Voltage output negative terminal


Note:

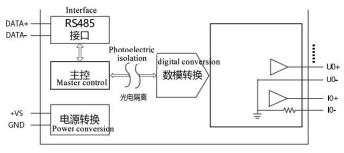
1. The negative terminals of the four channel voltage outputs are internally connected.

2


2. The negative end of the current output of four channels is internally connected.

Overall Dimension

Install


TD-4024 adopts DIN35mm guide rail installation mode. The guide rail shall comply with the installation dimension specification of TH35-7.5 guide rail in the national standard GB/T19334-2003. This standard is equivalent to the international standard of IEC 60715-1981. The installation must be stable and firm.

DIN-Rail Mounting

Overlay installation

Internal structure

Signal Communication Point Table

		nunication Point T			
Point Table	Attribute	Function	Value range and description		
40001	16-bit unsigned				
40002	Read and write	40001~40004	0~4095 corresponds to the lower limit and upper limit of the input		
40003	register. Power-off	corresponding Measured digital	range, For example, 4~20mA range:		
40004	storage Firmware version only:	value of channel 0 to channel 3	0 corresponds to 4mA, 4095 corresponds to 20mA, in a linear relationship.		
40201	16-bit unsigned				
40202	Read and write	40201~40204	0~20mA code is 0x0030 4~20mA code is 0x0031		
40011	register. Power-off storage	corresponds to the output range of channel 0~3	+/-10v code is 0x0032 +/-20mA code is 0x0033 0~10V code is 0x0034		
40203	Firmware version	Chamici 0-3	0-10 v code is 0x0034		
40204	only:				
40231	16-bit unsigned		0-4095 corresponds to the lower		
40232	Read and	40004 40004	and upper limit of the output		
40233	write register.	40231~40234 corresponds to the	range, the output value of the module when it is powered on,		
40234	Power-off storage Firmware version only:	output power-on value of channel 0~3	and the output digital value of the calculation method is consistent.		
40235	16-bit unsigned	40231~40234 corresponds to the	0-4095 corresponds to the lower and upper limit of the output		
40236	Read and write	output safety value of channel 0~3	range, the output value of the		
40237	register.	Chainer 0~3	module when it is powered on, and the output digital value of		
40238	Power-off storage Firmware version only:		the calculation method is consistent		
40239	16-bit unsigned Read and write register. Power-off storage Firmware version only:	Communication timeout value	0~999, corresponding to 0~999, when the value is 0, the communication timeout function is invalid		

Point	Attribute	Function	Value range and
Table			description
40211	16-bit read-only	Module name1	0X4024
40212	register	Module name2	0X0000
40213	register	Firmware version	0X0000~0XFFFF
40215	16-bit read and	Equipment communication address	0X0001~0X00FF Indicates the address of the device
40216	write register power-down storage	Baud rate	0: 1200bps 1: 2400bps 2: 4800bps 3: 9600bps

		4: 19200bps 5: 38400bps 6: 57600bps 7: 115200bps
40217	Verification method	0: No verification 1: Odd check 2: even parity check

■ Calculation formula of digital value

Calculate output value from digital value				
Measurement range	Calculation formula (D is digital value, 16-bit			
	unsigned integer)			
0~20mA	D / 4095 *20(mA)			
4~20mA	D / 4095 *16+4(mA)			
-10V~+10V	D / 4095 *20-10(V)			
-20mA~20mA	D / 4095 *40-20(mV)			
0~10V	D/ 65535 *10(V)			
Calculate digital value from expe	cted output value			
Measurement range	Calculation formula (D is digital value, 16-bit			
	unsigned integer)			
0~20mA	D=X /20*4095			
4~20mA	D=(X-4) / 16*4095			
-10V~+10V	D=(X+10)/20*4095			
-20mA~20mA	D=(X+20) /40*4095			
0~10V	D=X/10*4095			

TD-4024+ Four-Channel Analog Quantity Acquisition Module Instrations(Programming)

NOTICE

- Please check the product packaging, product label model, specifications are consistent with the order contract;
- Please read this manual carefully before installation and use. If you have any questions, please contact our technical support hotline;
- The product need to installed in a safe place;
- 24V DC power supply for instrument, 220V AC power supply is strictly
- It is strictly prohibited to disassemble and assemble the instrument without permission to prevent instrument failure or failure.
- The Company reserves the right to change the product without prior notice to the user. In case of any discrepancy between the contents of the instructions and the website, samples and other materials, the instructions shall prevail.
- Please scan the code for more product information and configuration

Baidu cloud disk

■MODBUS-TRU agreement

Profile

The MODBUS-RTU protocol provides multiple function codes to achieve multiple function codes function codes function codes function function codes function co different functions. TD-4000 series products only support some of the function codes. This manual only explains the function codes used. The function codes supported by TD-4000 series products are: 0X01, 0X03, 0X04, 0X06, 0X05, 0X0F, 0X10, of which TD-4024 does not support function codes 0X05 and 0X0F. The corresponding point table addresses and function descriptions of the function codes are shown in the following table.

1	re shown in the following table:					
	Function	symmetric	Function description			
	code	points address	-			
	0X01	0XXXX	Read the status of multiple coils (single bit			
			data)			
	0X05	0XXXX	Write single coil (single bit data) status			
			(0X0F can be replaced)			
	0X0F	0XXXX	Write multiple coils (single bit data) status			
	0X03	4XXXX	Read the value of multiple registers			
	0X04	4XXXX	Read the value of multiple registers (0X03			
			can be replaced)			
	0X06	4XXXX	Write a single register value (0X10 can be			
			replaced)			
	0X10	4XXXX	Write multiple register values			

3

Function code 0X01

1. The structure of the request message sent by the host, in which the starting address and the number of coils are represented by the large end. The starting address needs to be reduced by one from the point table address, for example, the address of 00016 is 0X000F.

Description	Number of bytes	Value range
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X01
Start address	2 byte	0X0000~0XFFFF
Number of coils	2 byte	0X0001~0X0040
CRC verification	2 byte	0X0000~0XFFFF

2. The slave returns the message structure. Each bit of the coil status data represents a coil status 1=ON and 0=OFF, and the LSB (least significant bit) of the first data byte represents the coil status of the starting address. The other coils are analogized, until the highest bit of this byte, and in the order of low to high in the subsequent bytes.

,,,	oscquent bytes.		
	Description	Number of	Value range
	-	bytes	
Ī	Device address	1 byte	Address of module
Ī	Function code	1 byte	0X01
Ī	Number of coil	1 byte	N(Notes)
	status bytes		` ′
Ī	Coil status	N byte	Big end mode, high byte first
	CRC verification	2 byte	0X0000~0XFFFF

NOTE: N=Coil quantity / 8 , If the remainder is not equal to 0 , N=Coil quantity / 8 + 1

3, EG, Read the 24 coil states of 00001~00024 of the module with address 1, Host sends message: (The message is in hexadecimal format)

01	01	00	00	00	17	3C	00
Mod ule addr ess			address		of coils	verific	CRC verific ation

Slave return message: (The message is in hexadecimal format)

01	01	03	01	03	07	2C	BC
Mod	Fun	Number	Coil	Coil	Coil	CRC	CRC
ule	ctio	of coil	status	status	status	verifi	verif
addr	n	status	byte 0	byte 1	byte 2	cation	icati
ess	code	bytes					on

The coil status byte of 3 bytes in total in the message returned from the slave:

Function code 0X0F

1. The structure of the request message sent by the host, in which the starting address and the number of registers are expressed in the large-end way, and the starting address needs to be reduced by one point table address. For example, the address of 00008 is 0X0007, each bit of the coil status data represents a coil status 1=0N, 0=0FF, and the LSB (least significant bit) of the first data byte represents the coil status of the starting address. The other coils are analogized, until the highest bit of this byte, and in the order of low to high in the subsequent bytes.

Description	Number of	Value range
_	bytes	
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X0F
Start address	2 bytes	0X0000~0XFFFF
Number of coils	2 bytes	0X0001~0X0040

Number of coil status bytes	1 byte	N (Notes)
Coil status	Nx byte	
CRCverification	2 bytes	0X0000~0XFFFF

Note: N=Number of coils/8, If the remainder is not equal to 0, N=Number of $\frac{1}{2}$ coils/8 + 1

2. The message structure returned by the slave is equivalent to the first 6 bytes of the host message plus 2 bytes of CRC verification;

Description	Number of	Value range
Î	bytes	
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X0F
Start address	2 bytes	0X0000~0XFFFF
Number of coils	2 bytes	0X0001~0X0040
CRCverification	2 bytes	0X0000~0XFFFF

3、EG, Set the status of 8 coils in modules $00017 \sim 00024$ with address 1 to: ON, OFF, ON, OFF, OFF, OFF, OFF, OFF;

Host sends message: (The message is in hexadecimal format)

01	0F	00	10	00	08	01	05	FF	55
Mod	Func	Start	Start	Numb	Numb	Numb	Coil	CRC	CRC
ule	tion	address	addres			er of	status	verifi	verif
addr	code	high	s low	coils	coils	coil	byte 0	cation	icati
ess		byte	byte	high	low	status			on
		l	l	bvte	bvte	bvtes		l	

Slave return message:(The message is in hexadecimal format)										
01	0F	00	10	00	08	55	C8			
Modu	Funct	Start	Start	Number	Number	CRC	CRC			
le	ion	address	address	of coils	of coils	ver	verifi			
addre	code	high byte	low byte	high byte	low byte	ific	catio			
SS						ati	n			
						on				

Function code 0X03

1. The structure of the request message sent by the host, in which the starting address and the number of registers are represented by the large end. The starting address needs to be removed from the first 4 of the point table address and then subtracted by one for example address of 40017 is 0X0010

Description	Number of	Value range
1	bytes	
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X03
Start address	2 bytes	0X0000~0XFFFF
Number of registers	2 bytes	0X0001~0X0040
CRC verification	2 bytes	0X0000~0XFFFF

2. The slave returns the message structure, and each register occupies 2 bytes. For each register, the first byte is the high byte of the register, and the second byte is the low byte of the register (that is, large-end mode);

Description	Number	of	Value range
•	bytes		-
Device address	1 byte		Module address
Function code	1 byte		0X03
Number of register	1 byte		2*N(Notes)
value bytes			· · ·
Register value	2*Nx byte		Big end mode, high byte first
CRC verification	2 bytes		0X0000~0XFFFF

Note: N=Number of registers

 for example, Read the value of two registers from 40009 to 40010 of the module with address 1.

Host sends message:(The message is in hexadecimal format)

01	03	00	08	00	02	45	c9
Mod	Fun	Start	Start	Number	Number	CR	CR

ule	ctio	address	address	of	of	C	C
addr	n	high	low byte	registers	registers	verif	verif
ess	code	byte		high	low byte	icati	icati
		*		byte		on	on

Slave return message: (The message is in hexadecimal format)

01	03	04	F1	03	F7	FF	3E	BF
Mod ule addr ess	Fun ctio n code	Number of register value bytes	Registe r byte 0	Regist er byte 1	Registe r byte 2	Registe r byte 3	CR C verif icati on	CR C verif icati on

The register value of 4 bytes in the message returned by the slave:

Byte 0 and byte 1 are the values of register 40009, hexadecimal representation is 0XF103, conversion to 16-bit unsigned number is 61699, conversion to 16-bit signed number is - 3837, byte 2 and byte 3 are the values of register 40010, hexadecimal representation is 0Xf7ff, conversion to 16-bit unsigned number is 63487, conversion to 16-bit signed number is - 2049,

Function code 0X10

1, The request message structure sent by the host, in which the starting address and the number of registers are expressed in the big-end mode. The starting address needs to be removed from the first 4 of the address of the point table, and then subtracted by one. For example, the address of 40004 is 0X0003, and each register occupies 2 bytes. For each register, the first byte is the high byte of the register, and the second byte is the low byte of the register (i.e., the big-end mode);

Description	Number of	Value range
	bytes	
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X10
Start address	2 bytes	0X0000~0XFFFF
Number of registers	2 bytes	0X0001~0X0040
Number of register	1 byte	2*N (Notes)
value bytes	-	2 11 (11868)
Register value	2*Nx byte	Big end mode, high byte first
CRC verification	2 bytes	0X0000~0XFFFF

Note: N=Number of registers

2. The message structure returned by the slave is equivalent to the first 6 bytes of the host message plus 2 bytes of CRC verification;

Description	Number of	Value range
r	bytes	
Device address	1 byte	Module address
Function code	1 byte	0X10
Start address	2 bytes	0X0000~0XFFFF
Number of registers	2 bytes	0X0000~0X0040
CRC verification	2 bytes	0X0000~0XFFFF

3. For example, set the value of the two registers of the module 40002~40003 with address 1 to 0XF003 (16-bit unsigned: 65283, 16-bit signed: - 4093), 0X0007 (16-bit unsigned: 7, 16-bit signed: 7);

Host sends message:

Γ	01	10	00	01	00	02	04
Γ	Mod	Fun	Start	Start	Number	Number	Number
1	ule	ctio	address	address	of	of	of
1	addr	n	high	low byte	registers	registers	register
1	ess	code	byte		high	low byte	value
L					byte		bytes

F0	03	00	07	В0	A1	
Number	Number	Number	Number	CR	CR	
of	of	of	of	C	C	
register	register	register	register	verif	verif	
value	value	value	value	icati	icati	
bytes 0	bytes 1	bytes 2	bytes 3	on	on	

Slave return message:

01	10	00	01	00	02	10	08
Mod	Fun	Start	Start	Number	Number	CR	CR
ule	ctio	address	address	of	of	C	C
addr	n	high	low byte	registers	registers	verif	verif
ess	code	byte		high	low byte	icati	icati
				byte		on	on