Software operation instructions

1. Open the TD-4000 configuration software through the start menu shortcut or desktop shortcut. Right-click the serial port on the left side of the software and select Refresh. The software will automatically search for the serial port on the computer and display the serial port number on the interface;

2. Click the serial port number connected to the module with the left mouse button. There are multiple function areas in the pop-up interface. If the software pops up the prompt box that the serial port cannot be connected, please check whether the serial port is normal or occupied by other software;

(1)**The communication configuration** is used to set the communication timeout and communication interval of the upper computer. The communication return data after sending the command. If the software fails to receive the returned data within this time, it will be deemed that the communication failed. The communication interval refers to the time for the software to send the next command after the software completes sending the command. After entering the value to be set, click Apply;

(2)**The module search** is used to search the module information (device model, communication address, baud rate, and verification method). The one-key search is the software sending the universal search command to the module (the module firmware version must be B0.01 or above, and only one module can be connected on the same serial port). This function can directly obtain the module information, Start search is to poll the search module information from the start address (all firmware versions are supported, and multiple modules with different communication addresses can be connected on the same serial port), and automatically stop when the search address is 255. Stop search is tos top the search in advance during the polling search process. The searched module information will be displayed below the serial port number, as shown in the figure above. The information contents are: device model, communication address, baud rate Verification method.

(3)**The new module** is used to manually add module information. If the information of the module has been learned in advance, select the known module model in the module model, select the known module address in the address, select the known module baud rate in the baud rate, select the known module verification method in the verification method, click the new module, and the new information will be displayed under the serial port number;

3. After the software obtains the module information, directly click the module information software with the left mouse button to automatically connect the module and display the communication parameter page and module function page;

(1)**The communication parameter page** is used to view the current address, baud rate, verification method and firmware version of the module. At the same time, you can also set the address, baud rate and verification method of the module. In the communication parameter setting area, select the address to be modified, baud rate and verification method, and then click the setting button. If the setting is successful, the software will pop up a prompt box. At this time, you need to search the module again, If the modification failure prompt box pops up, check whether there is a fault.

	通信参数 TD-4055
COM24 COM2 4055 (1#, 9600, 无核验)	TD-4055
	当前參数
	地址: 1 (十进制) 01 (十六进制)
	波特室: 9600
	校验方式: 无校验
	固件版本: B0.01
	通讯参数设置
	地址: 1# ~
	波特车: 9600 ~
	校验方式: 无校验 ~ 设定

(2)Page TD-4055P is used to view the measured values and configuration parameters of the module and modify the configuration parameters.

 Range configuration, Select the channel to be configured in the channel drop-down box, select the range to be configured in the range drop-down box, and then click Set Range. If you want all channels to be set to the same range, you can check the unified setting, and then click Set Range.

2) Set the timeout value. Enter the timeout value to be configured in the

communication timeout value input box, click Set Timeout Value, if you want to view the set communication timeout value, click Read Timeout Value, when the communication timeout value is not 0, when the module does not receive the communication command within the timeout value time, the module is deemed to be in the timeout state, at this time, the output channel will output the safety value, when the communication timeout value is 0, the function will fail.

3) Communication timeout value. Click the Read Timeout Value button to obtain

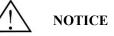
the timeout value of the current module. After entering the expected communication timeout value, click the Set Timeout Value. When the communication timeout value is not 0, when no communication command is received within the module timeout value range, the module is recognized as in the timeout state. At this time, the output channel will output the safe value. When the communication timeout value is 0, the function will fail.

4) Output power-on value and output safety value. Select the status to be

configured in the corresponding drop-down box. The output power-on value is the value output when the module is started, and the output safety value is the value output when the module is in the timeout state.

5)Output control. click the button corresponding to the output channel, and the software will automatically switch the output status of the output channel.

串口


- COM1 - COM24 - COM2

4055

600, 无校验)		数字量				设置输入	4310
000,70,00027					~		
	计数器初值	I: º			\$	设置计数	初唱
	通信超时值	[: 0	🔹 s	读	网超时值	设置超明	頄值
	控制						
	17.01	数据 输入状态	輸出控制	状态	输出上电值	输出安全	全值
	DI O	•	D0 0		关闭	/ 关闭	~
	DI 1		DO 1		关闭	关闭	~
	The second se		DO 2		关闭、	关闭	~
	DI 2		20 L	-	7.P0		
	DI 2 DI 3	•	DO 3	•	关闭	关闭	~
		•		•			
	DI 3		DO 3	-	关闭	关闭	~ ~ ~

TD-4055+ 16-Channel Analog Quantity Acquisition Module Instrations(Usage)

- Please check the product packaging, product label model, specifications are consistent with the order contract;
- Please read this manual carefully before installation and use. If you
 have any questions, please contact our technical support hotline;
- The product need to installed in a safe place;
- 24V DC power supply for instrument, 220V AC power supply is strictly prohibited;
- It is strictly prohibited to disassemble and assemble the instrument without permission to prevent instrument failure or failure.
- The Company reserves the right to change the product without prior notice to the user. In case of any discrepancy between the contents of the instructions and the website, samples and other materials, the instructions shall prevail.
- Please scan the code for more product information and configuration software.

Micro cloud

Baidu cloud disk

Profile

TD-4055+ is an industrial standard 16-channel digital input and output product, which supports dry contact input, wet node input and NPN type collector open circuit output. The wet node input supports polarity reversal. The input/output and RS485 communication interface are optically isolated from each other. The application layer adopts the standard MODBUS-RTU protocol, which is applicable to a variety of industrial occasions and automation systems. It is convenient to communicate with the host computer, and can realize fast networking and build the detection system.

Main Technical Parameters

Input

Switching value: 8-channel dry node, wet node(support polarity reversal, high level:10~50V, low level:0~2V) Input

Input mode:Digital quantity, rising edge counting, falling edge counting (digital quantity mode has no counting function).

Counter:16-bit increment count

Account frequency:≤100Hz

Output

Switching value:8-channel NPN-type collector open-circuit output, built-in freewheeling diode.

Output current:≤200mA

Communication terminal:

Signal type:RS-485 digital signal

Baud rate:1200、2400、4800、9600、19200、38400、57600、115200bps Verification method: no verification, odd verification or even verification Data bits:8bit

Stop bit: 1bit

Communication output protocol:MODBUS-RTU

Communication distance:1200m

General Technical Parameters

Power Supply: DC24V, Voltage Range: DC 9~30V Current Consumption: <1.5W @DC 24V

Dielectric Strength:1500V DC/1min (between input and output) Insulation Resistance: $\geq 100M\Omega$ (between input and output) Electromagnetic Compatibility: In accord with GB/T182681(IEC6132-1) Suit for Field Equipment: Configuration software, PLC, touch screen, computer

and other equipment supporting MODBUS - RTU protocol Indicator status

1. The indicator light is always on after power-on. If it is not on, it indicates power failure or poor contact;

2. The indicator flashes during normal communication;

3. When there is no communication, the indicator lamp flashes, indicating that the module is faulty.

4. When the switch input is valid, the corresponding indicator light will be on, otherwise it will be off.

5. When the switch output is valid, the corresponding indicator light will be on, otherwise it will be off.

Default factory parameters

Device address: 1 Baud rate: 9600bps Verification method: no verification Data bits:8bit

Stop bit:1bit

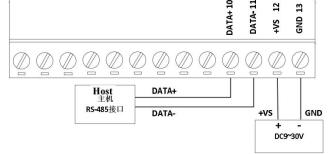
Input parameters: all input channels are set to digital range, and the initial technical value is 0.

Output parameters: output power-on value, safety value is off, communication timeout value is of.

Use environment

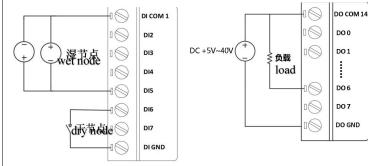
(1) The surrounding environment shall be free of strong vibration, impact, large current, spark and other electromagnetic induction effects. The air shall be free of corrosive media for chromium, nickel and silver coatings, and shall not contain flammable and explosive substances;

(2) Continuous operating temperature: $-40^{\circ}C \sim +85^{\circ}C$;

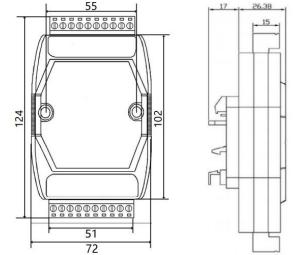

(3) Relative humidity : $10 \% \sim 90 \%$ R H(No condensation);

Range configuration description

Wiring instructions

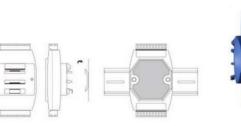

Communication and power wiring diagram:

The RS485 communication line is connected by hand. If star connection is required, please add a splitter. The terminal resistance Rt is added at both ends of the communication line as required.


• Connecting terminal description

Terminal	Terminal	Text
number	name	description
1	DI COM	Input port common
2	DI 2	Input channel 2 terminal
3	DI 3	Input channel 3 terminal
4	DI 4	Input channel 4 terminal
5	DI 5	Input channel 5 terminal
6	DI 6	Input channel 6 terminal
7	DI 7	Input channel 7 terminal
8	DI GND	Common ground terminal of input channel
9	NC	Empty terminal
10	DATA+	Positive end of communication interface
11	DATA-	Positive end of communication interface
12	+VS	Positive terminal of external power supply(9~30V)
13	GND	Negative terminal of external power supply (grounding)
14	DO COM	Output port common
15	DO 0	Output channel 0 terminal
16	DO 1	Output channel 1 terminal
17	DO 2	Output channel 2 terminal
18	DO 3	Output channel 3 terminal
19	DO 4	Output channel 4 terminal

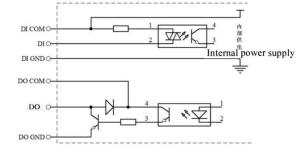
TD-4055 Instrations V1.6


20	DO 5	Output channel 5 terminal
21	DO 6	Output channel 6 terminal
22	DO 7	Output channel 7 terminal
23	DO GND	Common ground terminal of output channel
24	DI 0	Input channel 0 terminal
25	DI 1	Input channel 1 terminal
26	DI COM	Input port common

Overall Dimension

Install

TD-4055 adopts DIN35mm guide rail installation mode. The guide rail shall comply with the installation dimension specification of TH35-7.5 guide rail in the national standard GB/T19334-2003. This standard is equivalent to the international standard of IEC 60715-1981. The installation must be stable and firm.



DIN-Rail Mounting

Overlay installation

Internal structure

3

Signal Communication Point Table

		1			
Point Table	Attribute	Function	Value range and description		
40001	16-bit				
40002	unsigned				
40003	Read and		The count value of the		
40004		corresponding channel is only			
40005	register.	Corresponding	valid in the rising edge count		
40006	Power-off	to count value of	and falling edge count range. If		
40007	storage channels 0-7 you need to set or re	you need to set or reset the count			
40008	Firmware version only:		value, you can write the value of the corresponding register.		
40201	16-bit				
40202	unsigned				
40203	Read and		Digital quantity code is		
40203	write	40201~40208	0x0060;		
40204	register.	corresponds to the	Rising edge count code is		
	Power-off storage Firmware	input range of	0x0061;		
40206		channel 0~7	Falling edge count code is		
40207	version		0x0062		
40208	only:				
40231					
40232					
40233			0-65535 The module will assign		
40234				the initial count value to the corresponding channel's count	
40235	input initial could value wh		value when powering on.		
40236		value of channel 0~7	value when powering on.		
40237					
40238	16-bit	~			
40239	Read and write register. Power-off storage Firmware version only:	Communication timeout value	0~999, If the module fails to receive the host command within the timeout value of communication, it is deemed that the module has timed out, and the value is 0 to disable the timeout		
40240		Bit 0-7 respectively represents the power-on status of output channel 0-7, 1 is open, 0 is closed	0x00000~0x00FF When the module is powered on, the output channel is set to this value.		
40241		Bit 0-7 respectively represents the power-on status of output channel 0-7, 1 is open, 0 is closed	0x00000~0x00FF When the module is powered on, the output channel is set to this value.		

Point Table	Attribute	Function	Value range and description
40211		Module name1	0X4055
40212	16-bit read-only	Module name2	0X0000
40213	register	Firmware version	0X0000~0XFFFF
40215		Equipment communication address	0X0001~0X00FF Indicates the address of the device
40216	16-bit read and write register power-down storage	Baud rate	0: 1200bps 1: 2400bps 2: 4800bps 3: 9600bps 4: 19200bps 5: 38400bps 6: 57600bps 7: 115200bps
40217		Verification method	0 : No verification 1 : Odd check 2: even parity check

Point	Attribute	Function	Value range
Table			
00001			0 or 1
00002		00001~00008 Input	0 is input status of
00003		status corresponding to	closed,1 is input
00004	Single-bit read-only coil	input channel 0-7	status of opened.
00005		-	· · · · · ·
00006			
00007			
00008			
00017			0 or 1
00018	Single-bit read and	00017~00016 output	0 is input status of
00019	write coil, no storage	status corresponding to	closed, 1 is input
00020	after power failure	status corresponding to output channel 0-7	status of opened.
00020	1	1	· ·
00021			
00022			
00023			
00024			

TD-4055+ 16-Channel Switching Input and Output Module Instrations(Programming)

- Please check the product packaging, product label model, specifications are consistent with the order contract;
- Please read this manual carefully before installation and use. If you have any questions, please contact our technical support hotline;
- The product need to installed in a safe place;
- 24V DC power supply for instrument, 220V AC power supply is strictly prohibited;
- It is strictly prohibited to disassemble and assemble the instrument without permission to prevent instrument failure or failure.
- The Company reserves the right to change the product without prior notice to the user. In case of any discrepancy between the contents of the instructions and the website, samples and other materials, the instructions shall prevail.
- Please scan the code for more product information and configuration software.

Baidu cloud disk

3

MODBUS-TRU agreement

Profile The MODBUS-RTU protocol provides multiple function codes to achieve different functions. TD-4000 series products only support some of the function codes. This manual only explains the function codes used. The function codes supported by TD-4000 series products are: 0X01, 0X03, 0X04, 0X06, 0X05, 0X0F, 0X10, of which TD-4055 does not support function codes 0X05 and 0X0F. The corresponding point table addresses and function descriptions of the function codes are shown in the following table:

are billowin in i	c shown in the following table.					
Function	symmetric	Function description				
code	points address					
0X01	0XXXX	Read the status of multiple coils (single bit				
		data)				
0X05	0XXXX	Write single coil (single bit data) status				
		(0X0F can be replaced)				
0X0F	0XXXX	Write multiple coils (single bit data) status				
0X03	4XXXX	Read the value of multiple registers				
0X04	4XXXX	Read the value of multiple registers (0X03				
		can be replaced)				
0X06	4XXXX	Write a single register value (0X10 can be				
		replaced)				
0X10	4XXXX	Write multiple register values				

Function code 0X01

1. The structure of the request message sent by the host, in which the starting address and the number of coils are represented by the large end. The starting address needs to be reduced by one from the point table address, for example, the address of 00016 is 0X000F,

Description	Number of bytes	Value range
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X01
Start address	2 byte	0X0000~0XFFFF
Number of coils	2 byte	0X0001~0X0040
CRC verification	2 byte	0X0000~0XFFFF

2. The slave returns the message structure. Each bit of the coil status data represents a coil status 1=ON and 0=OFF, and the LSB (least significant bit) of the first data byte represents the coil status of the starting address. The other coils are analogized, until the highest bit of this byte, and in the order of low to high in the subsequent bytes.

Description	Number of	Value range
-	bytes	
Device address	1 byte	Address of module
Function code	1 byte	0X01
Number of coil	1 byte	N(Notes)
status bytes		
Coil status	N byte	Big end mode, high byte first
CRC verification	2 byte	0X0000~0XFFFF

NOTE: N=Coil quantity / 8, If the remainder is not equal to 0, N=Coil quantity / 8 + 1

3, EG, Read the 24 coil states of 00001~00024 of the module with address 1,

Host sends message: (The message is in hexadecimal format)

		0	•	0		,	
01	01	00	00	00	17	3C	00
	tion	Start address high byte		of coils		verific	

Slave return message: (The message is in hexadecimal format)

01	01	03	01	03	07	2C	BC
Mod	Fun	Number	Coil	Coil	Coil	CRC	CRC
ule	ctio	of coil	status	status	status	verifi	verif
addr	n	status	byte 0	byte 1	byte 2	cation	icati
ess	code	bytes			-		on

1

The coil status byte of 3 bytes in total in the message returned from the slave:

Byte 0: 0X01 binary system is 0000 0001, from right to left (That is, from the

Function code 0X0F

1. The structure of the request message sent by the host, in which the starting address and the number of registers are expressed in the large-end way, and the starting address needs to be reduced by one point table address. For example, the address of 00008 is 0X0007, each bit of the coil status data represents a coil status 1=ON, 0=OFF, and the LSB (least significant bit) of the first data byte represents the coil status of the starting address. The other coils are analogized, until the highest bit of this byte, and in the order of low to high in the subsequent bytes.

Description	Number of	Value range
_	bytes	_
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X0F
Start address	2 bytes	0X0000~0XFFFF
Number of coils	2 bytes	0X0001~0X0040
Number of coil status bytes	1 byte	N (Notes)
Coil status	Nx byte	
CRCverification	2 bytes	0X0000~0XFFFF

Note: N=Number of coils/8, If the remainder is not equal to 0, N=Number of coils/8 + 1

2. The message structure returned by the slave is equivalent to the first 6 bytes

of the host message plus 2 bytes of CRC verification;

01	The host message plus 2 bytes of effective termetation,							
	Description	Number of	Value range					
	_	bytes	-					
	Device address	1 byte	0X0001~0X00FF					
	Function code	1 byte	0X0F					
	Start address	2 bytes	0X0000~0XFFFF					
	Number of coils	2 bytes	0X0001~0X0040					
	CRCverification	2 bytes	0X0000~0XFFFF					

3, EG, Set the status of 8 coils in modules 00017~00024 with address 1 to:

ON, OFF, ON, OFF, OFF, OFF, OFF;

Host sends message: (The message is in hexadecimal format)

110	or ovnac	message	(1110	message		aavenna			
01	0F	00	10	00	08	01	05	FF	55
Mod	Func	Start	Start	Numb	Numb	Numb			CRC
		address						verifi	
addr	code			coils			byte 0	cation	icati
ess		byte	byte	high	low	status			on
				byte	byte	bytes			

Coil status byte 0: 0X05 binary system 0000 0101, from right to left ((That

Slave return message:(The message is in hexadecimal format)

01	0F	00	10	00	08	55	C8
Modu	Funct	Start	Start	Number	Number	CRC	CRC
le	ion	address	address	of coils	of coils	ver	verifi
addre	code	high byte	low byte	high byte	low byte	ific	catio
SS			-		-	ati	n
						on	

Function code 0X03

1. The structure of the request message sent by the host, in which the starting address and the number of registers are represented by the large end. The starting address needs to be removed from the first 4 of the point table address and then

2

subtracted by one for example address of 40017 is 0X0010

orracted by one, for end	inpre, addi ebb	01 10	017 15 0710010
Description	Number	of	Value range
-	bytes		
Device address	1 byte		0X0001~0X00FF
Function code	1 byte		0X03
Start address	2 bytes		0X0000~0XFFFF
Number of registers	2 bytes		0X0001~0X0040
CRC verification	2 bytes		0X0000~0XFFFF
	Description Device address Function code Start address Number of registers	Description Number bytes Device address 1 byte Function code 1 byte Start address 2 bytes Number of registers 2 bytes	bytes Device address 1 byte Function code 1 byte Start address 2 bytes Number of registers 2 bytes

TD-4055 Instrations V1.6

2. The slave returns the message structure, and each register occupies 2 bytes. For each register, the first byte is the high byte of the register, and the second byte is the low byte of the register (that is, large-end mode):

2	and to a style of the register (that is, high one mode))								
Description	Number	of	Value range						
_	bytes								
Device address	1 byte		Module address						
Function code	1 byte		0X03						
Number of reg	ister 1 byte		2*N(Notes)						
value bytes			· · · · ·						
Register value	2*Nx byte		Big end mode, high byte first						
CRC verificatio	n 2 bytes		0X0000~0XFFFF						

Note: N=Number of registers

3、 for example, Read the value of two registers from 40009 to 40010 of the

module with address 1,

Hc	ost sends	s message:(The message	ge is	in her	(adec11	mal	format)		
01	03	00	08		0	0		02	45	c9
Mod ule addr ess	Fun ctio n code	Start address high byte	Start addres low by		of		of re	umber gisters w byte	CR C verif icati on	CR C verif icati on
Sla	ave retu	rn message:	(The m	essa	ge is i	n hexa	deci	mal form	nat)	
01	03	04	F1	(03	F7		FF	3E	BF
Mod ule addr ess	Fun ctio n code	Number of register value bytes	Registe r byte 0		gist byte	Regi r byte 2		Registe r byte 3	CR C verif icati on	CR C verif icati on

The register value of 4 bytes in the message returned by the slave:

Byte 0 and byte 1 are the values of register 40009, hexadecimal representation is 0XF103, conversion to 16-bit unsigned number is 61699, conversion to 16-bit signed number is - 3837, byte 2 and byte 3 are the values of register 40010, hexadecimal representation is 0Xf7/ff, conversion to 16-bit unsigned number is 63487, conversion to 16-bit signed number is - 2049,

Function code 0X10

1. The request message structure sent by the host, in which the starting address and the number of registers are expressed in the big-end mode. The starting address needs to be removed from the first 4 of the address of the point table, and then subtracted by one. For example, the address of 40004 is 0X0003, and each register occupies 2 bytes. For each register, the first byte is the high byte of the register, and the second byte is the low byte of the register (i.e., the big-end mode);

Description	Number of	Value range
-	bytes	-
Device address	1 byte	0X0001~0X00FF
Function code	1 byte	0X10
Start address	2 bytes	0X0000~0XFFFF
Number of registers	2 bytes	0X0001~0X0040
Number of register value bytes	1 byte	2*N (Notes)
Register value	2*Nx byte	Big end mode, high byte first
CRC verification	2 bytes	0X0000~0XFFFF

Note: N=Number of registers

2. The message structure returned by the slave is equivalent to the first 6 bytes of the host message plus 2 bytes of CRC verification;

Description	Number of	Value range
	bytes	
Device address	1 byte	Module address
Function code	1 byte	0X10
Start address	2 bytes	0X0000~0XFFFF
Number of registers	2 bytes	0X0000~0X0040
CRC verification	2 bytes	0X0000~0XFFFF

3, For example, set the value of the two registers of the module 40002~40003 with address 1 to 0XF003 (16-bit unsigned: 65283, 16-bit signed: - 4093), 0X0007 (16-bit unsigned: 7, 16-bit signed: 7); Host sends message:

01	10	00	01	00	02	04
Mod	Fun	Start	Start	Number	Number	Number
ule	ctio	address	address	of	of	of
addr	n	high	low byte	registers	registers	register
ess	code	byte	-	high	low byte	value
				byte		bytes

1	F0	03	00	07	B0	A1	
	Number	Number	Number	Number	CR	CR	
	of	of	of	of	C	С	
	register	register	register	register	verif	verif	
	value	value	value	value	icati	icati	
	bytes 0	bytes 1	bytes 2	bytes 3	on	on	

Slave return message:

01	10	00	01	00	02	10	08
Mod	Fun	Start	Start	Number	Number	CR	CR
ule	ctio	address	address	of	of	C	C
addr	n	high	low byte	registers	registers	verif	verif
ess	code	byte		high	low byte	icati	icati
				byte		on	on

1