TD-4117 User Manual V1.3

Software operating instructions

-, Open the data acquisition module configuration software through the start menu shortcut or desktop shortcut, right-click on the serial port on the left side of the software and select Refresh, the software will automatically search for the serial port on the computer, and display the serial slogan on the interface;

 \equiv Click the serial port connected with the module by the left mouse button, there are multiple functional areas in the pop-up interface, if the software pops up the serial port cannot be connected prompt box, please check whether the serial port is normal, or whether it is occupied by other software;

COM1	COMPACED IN			
- COM2	串口号:	COM2		
4017P(1#,9600, 无校验)	通信配置			
	通信超时:	1000	ns	
	通信间隔:	1000	ns	应用
	模块搜索			
	起始地址:	1	2	一键搜索
	扫描地址:	7	(十进制)	开始搜索
		07	(十六进制)	停止搜索
	新增模块			
	模块型号:	TD-4017+(P)	1	
	地址:	1#	/	
	波特率:	9600	1	新增模块
	校验方式:	无检验	/	

1. The communication configuration is used to set the communication timeout and the communication interval of the host computer, the communication timeout refers to the maximum time that the software waits for the module to return the data after sending the instruction, if the software fails to receive the returned data within this time, it is determined that the communication fails, the communication interval refers to the software completes the instruction and waits for this time after sending the next instruction, after entering the value to be set, click the application;

2. Module search is used to search for module information (device model, communication address, baud rate, check mode), where one-click search is the software to send a universal search command to the module (the module firmware version needs to be in B0.01 and above, and only one module can be connected on the same serial port), this function can directly obtain the information of the module information (all firmware versions are supported, and multiple modules with different communication addresses can be connected on the search address is 255, the stop search is to stop the search in advance during the polling search, and the searched module information will be displayed below the serial slogan, as shown in the figure above, the information content is: device model, communication address, baud rate, check mode:

3. If the information of the module has been known in advance, select the known module model in the module model, select the known module address in the address, select the baud rate of the known module in the baud rate, select the known module verification method in the verification mode, click the new module, and the new information will be displayed below the string slogan;

四、After the software obtains the module information, the software will

automatically connect the module by clicking the module information directly with the left mouse button, and display the communication parameter page and the module function page;

1. The communication parameters page is used to view the current address, baud rate, verification mode and firmware version of the module, and you can also set the address, baud rate and verification mode of the module, select the address to be modified in the communication parameter setting area, click the setting button after the baud rate and verification mode, if the setting is successful, the software will pop up a prompt box, at this time, you need to search for the module again, if the modification failure prompt box pops up, you need to check whether there is a fault.

CONT	MINS/91 4117
0085 (0- 0085	4117
- COM7	当前参数
CONII	地址: (十进期) 01 (十六进制)
	波特率: 9600
	核验方式: 无核验
	四件版本: 02.02
	道讯参数设置
	地址: 1 📑
	波特本: 1600 ~
	校验方式: 无校验 ~ 说定

3、The TD-4117 page is used to view the measured values of the module, configure the parameters, and modify the configuration parameters

(1) To set the sampling rate, select the desired sampling rate in the drop-down box of the sampling rate setting, and click Set Sampling Rate.

(2) If you want all channels to be set to the same range, you can check the unified settings and click Set Range.

(3) Configure the upper and lower limits of the engineering value, select the channel you want to configure in the channel drop-down box, enter the upper and lower limits of the engineering value to be configured in the input box of the upper and lower limits of the engineering value, click to set the upper and lower limits, if you want all channels to be set to the same upper and lower limits of the engineering value, you can check the unified settings, and click to set the upper and lower limits.

(4) To enable the channel, select the enabling status of the channel (select Enable and Disable) from the selection box on the channel enable configuration page, and click Enable Settings.

(5) Real-time curve, click the real-time curve button, and the software will pop up the real-time curve interface.

- com	通信:	参数 4117						
- 0085		设置						
-4117(14,9600,无校验)		27.02.4520.00	100 /	with ro to T	Time (In Carl States	
10		米特华农品	10Hr (X1400/00T	29(34746)/	~	设置未件率	
		通道:	0			~	□ 统一设置	
		量程:	4"20ed	(短路帽雷	连挨)	~	设置量程	
		工程值下限	0	(-3270	81327071			
			-					
		工程值上限	e	(-3276	B~32767)		设置上下限	
		通道使命感受	韵报	[
		透道	使能	数值	進程		Â	
		0		4.000mA	4"20.n.t			设置建筑
		1		4.000mA	4"20mA			0.1110.000
		2		4.000ml	4 '20mA			
		3	2	4.000mA	4 2068			
		4		4.000mA	4 20m8			
		0	M	4.000 A	4 2084			
		0	2	4.00084	1 2004		~	279-1-11-16

3. The real-time curve interface is shown in the figure

(1) The highest end of the curve interface corresponds to the upper limit of the range, and the lowest end of the curve interface corresponds to the lower limit of the range.

(2) Check or cancel the channel configuration selection box to choose whether to display the curves of the corresponding channel;

(3) Click on the color palette in the channel configuration to select the curve color of the corresponding channel;

(4). Select the channel drop-down box on the left and right sides of the interface to choose to display the measured value and extreme value of the corresponding channel;

(5) Enter the collection interval and click Apply to set the period for reading the data;

(6) 、Tick the Save Data selection box to save the channel measurement data as . CSV file (Excel can be opened);

(7) Click the Select Save Path button to re-select the file name and path you want to save;

(8) Click the start button and the software will start recording data;

(9) Click the stop button and the software will stop recording data;

(10) In the stopped state, the scroll bar below the sliding curve allows you to view the recorded data;

Q&A

1. Q: After the voltage signal is connected, the measured value is less than the value of the connected voltage signal?

A: Check that the channel's short-circuit cap is broken.

2. Q: After connecting the current signal, the current value cannot be measured?

A: Check whether the input current signal is out of the range, such as 4~20mA range, the current is less than 4mA, or the current is negative.

3. Q: When I input a signal greater than half the range during programming, the data read is abnormal?

A: The programming system used parses the unsigned data into a signed one, and it is recommended to read the measured raw value.

TD-4117 High common-mode eight-channel analog acquisition module

(User Manual)

- Please check whether the outer packaging of the product, the model and specification of the product label are consistent with the order contract;
- Please read this manual carefully before installation and use, if you have any questions, please contact the company's technical support hotline;
- The product should be installed in a safe place;
- The instrument is powered by 24V DC power supply, and it is strictly forbidden to use 220V AC power supply;
- It is strictly forbidden to disassemble and assemble the instrument without permission to prevent the instrument from failing or malfunctioning.
- The company reserves the right to change the product without prior notice to the user, if the content of the instructions for use is inconsistent with the website, samples and other information, this manual shall prevail.
- For more product information and configuration software, please scan the code to
 obtain

Profile

The TD-4117 supports ± 15V, ±10V, ±5V, ±1V, ±500mV, ±150mV, ±20mA, 4~20mA, 0~15V, 0~10V, 0~5V, 0~1V, 0~500mV, 0~150mV, 0~20mA range, and eight differential inputs. The AD acquisition part is optoelectically isolated, and the application layer adopts the standard MODBUS-RTU protocol, which is suitable for a variety of industrial occasions and automation systems. It is convenient to communicate with the host computer, which can realize fast networking and build a monitoring system.

Mainly technical parameter INPUT

Number of channels: 8

Input range: ±15V, ±10V, ±5V, ±1V, ±500mV, ±150mV, ±20mA, 4~20mA, 0~10V, 0~5V, 0~1V, 0~500mV, 0~150mV, 0~20mA, 0~15V

Input: Eight channels of current or voltage differential unipolar and bipolar inputs

Sampling frequency: ≤10Hz, 50Hz or 100Hz (total), (channel sampling rate = total sampling rate / number of enabling channels, 1.25Hz when 10Hz and 8 channels are fully enabled, of which 10Hz sampling rate supports 50/60Hz power frequency rejection)

Accuracy class: $\leq 0.1\%$

Input impedance: current: 100Ω , voltage: $20M\Omega$

Common mode voltage: ≤ 2000VDC (the voltage between any input ports cannot be greater than the common mode voltage)

Note: A certain voltage value is measured when the voltage range is open

Communication side

Signal Type: RS-485 digital signal

Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps Verification method: no check, odd check or even check

Data bits: 8 bits Stop bits: 1 bit

Communication protocol: Standard MODBUS-RTU protocol

Communication distance: 1200m (typical)

Basic parameter

Power supply: DC24V, voltage range: DC 9~30V

Power consumption: <1.5W @DC 24V

Dielectric strength: 3000V DC/1min (between communication and input) Insulation resistance: \geq 100M Ω (between communication and input) Electromagnetic compatibility: according to GB/T 182681 (IEC 6132-1) Applicable field devices: configuration software, PLC, touch screen, computer and other devices that support MODBUS - RTU protocol

Indicator status

1. After powering on, the indicator light is always on, and if it is not lit, it means that the power supply is faulty or the contact is poor;

2. During normal communication, the indicator light flashes;

3. When there is no communication, the indicator light flashes, which indicates that the module is faulty

Default factory parameters

Device address: 1 Baud rate: 9600bps Verification method: no verification Data bit: 8 bits, stop bit: 1 bit

Channel range: all are set to 4-40mA range, and the acquisition status is enabled:

Use environment

(1) There shall be no strong vibration, impact, high current and spark and other electromagnetic induction effects in the surrounding environment, and the air shall not contain the medium that corrodes chromium, nickel and silver plating, and shall not contain flammable and explosive substances; (2) Continuous operating temperature: -40°C~ +85°C;

(3) Relative humidity : 10 % ~ 90 % R H(No condensation):

Quantum configuration description

Each channel can be individually configured with a range, and the input range can be flexibly selected for customer convenience. When you open the equipment shell, you can find that there are P1~P8 jumpers near the terminals of the equipment, corresponding to the eight channels of INO-IN7 respectively.

(1) When INx measures the voltage signal, the jumper Px of the corresponding channel is disconnected, as shown in the left figure below;

(2) When INx measures the current signal, the jumper Px of the corresponding channel is closed, as shown in the figure on the right below;

Wiring instructions

Communication and power wiring diagrams:

The RS485 communication line is connected by hand-in-hand, if you need a star connection, please add an external splitter, and the terminal resistor Rt is added at both ends of the communication line as needed.

Enter the signal wiring diagram:

can be input at the same time

	Terminal number	Terminal name	Textual description
Γ	1	IN5+	Analog input 5-channel positive end
	2	IN5-	Analog input 5-channel negative end
	3	IN6+	Analog input 6-channel positive end

2

IN6-	Analog input 6-channel negative end
IN7+	Analog input 7-channel positive end
IN7-	Analog input: 7 channels on the
	negative end
DATA+	RS-485 communication interface at
	the positive end
DATA-	RS-485 communication interface
	negative end
+VS	Positive end of external power
	supply (9~30V)
GND	Negative end of external power
	supply (ground)
IN0+	Analog input 0 channel positive
IN0-	Analog input 0 channel negative
	end
IN1+	Analog input 1 channel positive end
IN1-	Analog input 1 channel negative
	end
IN2+	Analog input 2-channel positive end
IN2-	Analog input 2 channel negative
	end
IN3+	Analog input 3-channel positive end
IN3-	Analog input 3-channel negative
	end

end

Dimensions

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

IN4+

IN4-

The TD-4117 is mounted on a DIN 35mm rail arrangement. The guide rail shall conform to the installation size specification of the TH35-7.5 type guide rail in the national standard with standard number: GB/T19334-2003. This standard is

GND

0

 \bigcirc

 \bigcirc

Four-wire sensor wiring

传感器

OUT- GND

ln+

In-

In+

In-

TD-4117 User Manual V1.3

Analog input 4-channel positive

Analog input: 4-channel negative

equivalent to the international standard of the International Electrotechnical Commission IEC60715-1981. The installation must be stable and secure.

Rail mounting

Stacked installations

Internal block diagram

TD-4117 User Manual V1.3

A tabl	e of communic	ation points			
Point table	Attribute	Feature description	Value range and description		
40001		description	0~65535 corresponds to the		
40002			lower and upper limits of the		
40003	1		input range, Such as 4~20mA range:		
40004	16-bit	40001~40008			
40005		correspondence	0 corresponds to 4mA, 65535		
40006	unsigned	The measured	corresponds to 20mA, there is		
40007	Read-only	digital value of	a linear relationship,		
	registers	channel 0 ~	Some PLCs or software do not		
		channel 7	support the 16-bit unsigned		
40008			format, so it is recommended		
			to read the raw value of the		
40000					
40009	ł		correspondence		
40010	ļ		4~20mA current value 1000		
40011			times		
40012	16-bit		1000 times the voltage value		
40013			of 15V		
40014			1000 times the voltage value		
40015	signed		of 10V		
40015	Read-only	40009~40016	5 times the voltage value of		
	registers	correspondence	1000V		
	Firmware	The measured	1000 times the voltage value		
		raw value of	of 1V		
	version	channel	10 times the value of 500mV		
	only:	0~channel 7	millivolts		
40016	BU.01 and		100 times the 150mV millivolt		
40010	above		Value		
			of 20mA		
			For example, if the reading		
			value is -9857 in the $\pm/-10V$		
			range, the actual value is		
			-9.857V		
40017			-32768~32767		
40018	16-bit		It is related to the upper and		
40019	signed		lower limits of engineering		
40020	Read-only	40017~40024	values and measured values		
40021	registers	correspondence	For example: 4~20mA range,		
40022	1.	The measured	the upper limit of the		
40023	Firmware	engineering	engineering value is 1000,		
	version	value of channel	The lower limit of the		
	only:	0 ~ channel 7	engineering value is 0, when		
40024	BU.UT and		the current of 10mA is		
	above		connected,		
40101	16 hit	Channel 0			
40101	16-DIT	channel 0	-32/68~32/6/, The lower limit of the		
1	unsigned				
	unsigned Read and	lower limit	engineering value		
40102	unsigned Read and write	lower limit	engineering value		
40102	unsigned Read and write registers	lower limit The upper limit	engineering value corresponds to the lower limit		
40102	unsigned Read and write registers Power-dow	Iower limit The upper limit of the project value of channel	engineering value corresponds to the lower limit of the measuring range The upper limit of the project		

40103		Channel 1 lower	upper limit of the measuring	
	Firmware	limit of	range	
	version	engineering	As:	
	only:	value	4~20mA range, sensor range	
40104	B0.01 and	Upper limit of	is 0~1.6Mpa, then the lower	
	above	the project value	limit of the engineering value	
		of channel 1	can be set to 0, the upper limit	
40105		Channel 2	of the engineering value is	
		engineering	16000, when the engineering	
		value lower limit	value of the corresponding	
40106		Upper limit of	channel is read is 3954, the	
		the project value	actual value is 0.3954Mpa	
		of channel 2		
40107		Channel 3		
		engineering		
		value lower limit		
40108		Upper limit of		
		the project value		
		of channel 3		
40109		Channel 4		
		engineering		
		value lower limit		
40110		Upper limit of		
		the project value		
		of channel 4		
40111		Channel 5 lower		
		limit of		
		engineering		
		value		
40112		Upper limit of		
		the project value		
		of channel 5		
40113		Channel 6		
		engineering		
		value lower limit		
40114		Upper limit of		
		the project value		
		of channel 6		
40115		Channel 7 works		
		at the lower		
		limit		
40116		Upper limit of		
		the engineering		
		value of channel		
	1	17		

Point	Attribute		Feature	Value range and description		
table			description			
40201				4~20mA Code is 0x0007		
40202]			+/-10V Code is 0x0008		
40203				+/-5V Code is 0x0009		
40204				+/-1V Code is 0x000A		
40205	10 64		4020140208	+/-500mV Code is0x000B		
40206			40201~40208	+/-150mV Code is 0x000C		
40207	Read an	a	corresponding	+/-20mA Code is 0x000D		
40207	write		to the input	±15V Code is 0x0015		
40200	registers		range of	0~10V Code is 0x0048		
	Power-dow	n	channel	0~5V Code is 0x0049		
	storage		0~channel 7;	0~1V Code is 0x004A		
				0~500mV Code is 0x004B		
				0~150mV Code is 0x004C		
				0~20mA Code is 0x004D		
				0~15V Code is 0x0055		
	1			1		
Point	Attribute		Feature	Value range and description		
table			description			
40211			Module model 1	0X4117		
40212	16-bit		Module model 2	0X0000		
40213	40213 Read-only registers		Firmware	0X0000~0XFFFF		
			version			
	40215		Device	0X0001~0X00FF		
40215			communication	Represents the address of the		
			address	device		
	16-bit			0: is 1200bps		
	Read an	d		1: is 2400bps		
	write			2: is 4800bps		
40216	registers		baud rate	3: is 9600bps		
40210	Power-dow	'n	Dauu Tale	4: is 19200bps		
	storage			5: is 38400bps		
				6: is 57600bps		
				7: is 115200bps		
40217			Verification	0: no check 1: Odd check		
40217			method	2: Puppet checks		
The formation	ormula for c	alc	lculating the numeric value			
Range		C	alculation formula (D is a numeric value, 16-bit		
		u	nsigned integer)			
4~20mA	\	D	÷ 65535 × 16 + 4	(mA)		
±10V		D ÷ 65535 × 20 - 10 (V)				
±5V		D	÷ 65535 × 10 - 5	(V)		
±1V		D	÷ 65535 × 2 - 1	(V)		
±500mV		D	÷ 65535 × 1000 -	500 (mV)		
±150mV		D	÷ 65535 × 300 - 1	150 (mV)		
±20mA		D	÷ 65535 × 40 - 20) (mA)		
±15V		D	÷ 65535 × 30 - 15	o (V)		
0~10V		D	÷ 65535 × 10 (V)			
0~5V		D	÷ 65535 × 5 (V)			
0~1V		D	÷ 65535 × 1 (V)			
0~500m	V	D	÷ 65535 × 500 (m	iV)		
0~150m	V I	D	÷ 65535 × 150 (m	iV)		
		D ÷ 65535 × 20 (mA)				
0~20mA		D	÷ 65535 × 20 (mA	A)		

TD-4117 Eight-channel analog acquisition module User

manual(Programming)

注意

- Please check whether the outer packaging of the product, the model and specification of the product label are consistent with the order contract;
- Please read this manual carefully before installation and use, if you have any questions, please contact the company's technical support hotline;
- The product should be installed in a safe place;
- The instrument is powered by 24V DC power supply, and it is strictly forbidden to use 220V AC power supply;
- It is strictly forbidden to disassemble and assemble the instrument without permission to prevent the instrument from failing or malfunctioning.
- The company reserves the right to change the product without prior notice to the user, if the content of the instructions for use is inconsistent with the website, samples and other information, this manual shall prevail.
- For more product information and configuration software, please scan the code to obtain

4

MODBUS-RTU Protocol

Profile

The MODBUS-RTU protocol stipulates a variety of function codes to achieve different functions, TD-4000 series products only support some of the function codes, this manual only explains the function codes used, TD-4000 series products support function codes are: 0X01, 0X03, 0X04, 0X06, 0X05, 0X0F, 0X10, of which TD-4117 does not support function codes 0X01, 0X05 and 0X0F, The address and function description of the point table corresponding to the function code are shown in the following table:0X01、0X05 and 0X0F,

Feature	The address of	Feature description
codes	the	
	corresponding	
	point table	
0X01	0XXXX	Read the status of multiple coils (single bit
		data).
0X05	0XXXX	Write single coil (single bit data) status (0X0F
		can be replaced)
0X0F	0XXXX	Write multiple coils (single bit data) status
0X03	4XXXX	Read the values of multiple registers
0X04	4XXXX	Read the value of multiple registers (0X03 can
		be substituted)
0X06	4XXXX	Write a single register value (0X10 can be
		substituted)
0X10	4XXXX	Write multiple register values

Feature codes 0X01

1. The structure of the request packet sent by the host, in which the starting address and the number of coils are expressed in big-endian mode, and the starting address must be reduced by one, for example, the address of 00016 is 0X000F.

Instructions	Number of bytes	Value range		
Device address	1byte	0X0001~0X00FF		
Feature codes	1byte	0X01		
Start address	2bytes	0X0000~0XFFFF		
Number of coils	2bytes	0X0001~0X0040		
CRC check	2bytes	0X0000~0XFFFF		

2. The slave returns a packet structure, where each bit of the coil state represents a coil state 1 = ON and 0 = OFF, and the LSB (least significant bit) of the first data byte represents the coil state of the start address. The other coils and so on up to the highest bit of this byte, and in the following bytes from low to high.

Instructions	Number of	Value range
	bytes	
Device address	1byte	Module address
Feature codes	1byte	0X01
The number of coil	1byte	N(Note)
state bytes		
Coil status	Nbytes	Big-endian mode, with high
		bytes first
CRC check	2bytes	0X0000~0XFFFF

Note: N=number of coils / 8, if the remainder is not equal to 0, then N=number of coils / 8 + 1

3. For example, read the status of 24 coils of module 00001~00024 with address 1.

Packets sent by the host: (The packets are in hexadecimal format)

Tucker	ruckets sent by the nost. (The packets are in nexadecimal format)								
01	01	00	00	00	18	3C	00		
Mod ule addr ess	Feat ure code s	The start address is high bytes	The start address is low bytes	The number of coils is high bytes	The number of coils is low in bytes	CRC check	CRC check		
Slave I	Return	Packet: (Pa	cket in hex	adecimal fo	ormat)				

01	01	03	01	03	07	2C	BC
Mod	Feat	The	Coil	Coil	Coil	CRC	CRC
ule	ure	number	status	status	status	chec	chec
addr	cod	of coil	bytes 0	bytes 1	bytes 2	k	k
ess	es	state					
		bytes					

The 3-byte coil status byte in the packet returned by the slave machine is as follows:

Feature codes 0X0F

1. For example, the address of 00008 is 0X0007, each bit of the coil state represents a coil state 1 = ON and 0 = OFF, and the LSB (least significant bit) of the first data byte represents the coil state of the start address. The other coils and so on up to the highest bit of this byte, and in the following bytes from low to high.

Instructions	Number of	Value range
	bytes	
Device address	1byte	0X0001~0X00FF
Feature codes	1byte	0X0F
Start address	2bytes	0X0000~0XFFFF
Number of coils	2bytes	0X0001~0X0040
The number of coil	1byte	N (Note)
state bytes		
Coil status	Nbytes	
CRC check	2bytes	0X0000~0XFFFF

Note: N=number of coils/8, if the remainder is not equal to 0, then N=number of coils/8+1

2. The structure of the slave return packet is equivalent to the first 6 bytes of the host packet plus 2 bytes of CRC check.

Instructions	Number of	Value range
	bytes	
Device address	1byte	0X0001~0X00FF
Feature codes	1byte	0X0F
Start address	2bytes	0X0000~0XFFFF
Number of coils	2bytes	0X0001~0X0040
CRC check	2bytes	0X0000~0XFFFF

3, For example, if the address 1 module 00017~00024 is addressed, the status of 8 coils is set to: ON, OFF, ON, OFF, OFF, OFF, OFF, OFF;

TD-4117 User Manual V1.3

rackets sent by the nost. (The packets are in nexadecinal form	Packets sent by	the host:	(The	packets a	are in	hexadecimal	format
--	-----------------	-----------	------	-----------	--------	-------------	--------

01	0F	00	10	00	08	01	05	FF	55
Mod	Feat	The	The	The	The	The	Coil	CRC	CRC
ule	ure	start	start	numb	numb	numb	status	check	chec
addr	code	address	addres	er of	er of	er of	bytes		k
ess	s	is high	s is	coils is	coils is	coil	0		
		bytes	low	high	low in	state			
			bytes	bytes	bytes	bytes			

Coil status bytes 0: 0X05 The binary is 0000 0101, from right to left (i.e. from the lowest bit of the byte to the highest bit) represents 00017~00024 The state is ON, OFF, ON, OFF, OFF, OFF, OFF, OFF,

Slave Return Packet: (Packet in hexadecimal format)

					,		
01	0F	00	10	00	08	55	C8
Modu	Featu	The start	The start	The	The	CRCc	CRCc
le	re	address	address	number	number	heck	heck
addre	code	is high	is low	of coils is	of coils		
SS	s	bytes	bytes	high	is low in		
				bytes	bytes		

Feature codes 0X03

1. The structure of the request packet sent by the host, in which the start address and the number of registers are represented in big-endian mode, and the start address must be removed from the beginning of the dot table address 4 and then subtracted by one, for example, the address of 40017 is 0X0010

Number of	Value range
bytes	
1byte	0X0001~0X00FF
1byte	0X03
2bytes	0X0000~0XFFFF
2bytes	0X0001~0X0040
2bytes	0X0000~0XFFFF
	Number of bytes 1byte 1byte 2bytes 2bytes 2bytes

2. The slave returns a message structure, each register occupies 2 bytes, for each register, the first byte is the register high byte, and the second byte is the register low byte (i.e., big-end mode):

 5 7 7 7 7	, ,,	
Instructions	Number of	Value range
	bytes	
Device address	1byte	Module address
Feature codes	1byte	0X03
Number of bytes of	1byte	2*N(Note)
register value		
Register value	2*Nbytes	Big-endian mode, with high
		bytes first
CRC check	2bytes	0X0000~0XFFFF

Note: N=Number of registers

2. For example, if you read the values of the two registers of the module $40009 \sim 40010$ with address 1,

Packets sent by the host: (The packets are in hexadecimal format)

01	03	00	08	00	02	45	c9
Mod ule addr ess	Feat ure cod es	The start address is high bytes	The start address is low bytes	The number of register s is high bytes	The number of register s is low in bytes	CRC chec k	CRC chec k

Slavrethun Pakter: (Pakter in Hexard West Malformatt)

01	03	04	F1	03	F7	FF	3E	BF
Mo dule add ress	Feat ure cod es	Number of bytes of register value	Registe r bytes 0	Regist er bytes 1	Registe r bytes 2	Regist er bytes 3	CRC che ck	CRC che ck

The register value of the 4-byte total in the packet returned by the slave is as follows:

Bytes 0 and 1 are the values of register 40009, hexadecimal is 0XF103, converted to 16-bit unsigned number is 61699, converted to 16-bit signed number is -3837, byte 2 and byte 3 are the value of register 40010, hexadecimal value is 0Xf7ff, converted to 16-bit unsigned number is 63487, converted to 16-bit signed number is -2049,

Feature codes 0X10

1. The structure of the request packet sent by the host, in which the starting address and the number of registers are represented in big-endian mode, and the starting address needs to be removed from the beginning of the dot table address 4 and then subtracted by one, for example, the address of 40004 is 0X0003, and each register occupies 2 bytes, for each register, the first byte is the high byte of the register, and the second byte is the low byte of the register (i.e., the large-endian mode):

Instructions	Number of	Value range
	bytes	
Device address	1byte	0X0001~0X00FF
Feature codes	1byte	0X10
Start address	2bytes	0X0000~0XFFFF
Number of	2bytes	0X0001~0X0040
registers		
Number of bytes of	1byte	2*N (Note)
register value		
Register value	2*Nbytes	Big-endian mode, with high
		bytes first
CRC check	2bytes	0X0000~0XFFFF

Note: N = number of registers

2. The structure of the slave return packet is equivalent to the first 6 bytes of the host packet plus 2 bytes of CRC check.

Instructions	Number of	Value range	
	bytes		
Device address	1byte	Module address	
Feature codes	1byte	0X10	
Start address	2bytes	0X0000~0XFFFF	
Number of	2bytes	0X0000-0X0040	
registers		0X0000~0X0040	
CRC check	2bytes	0X0000~0XFFFF	

3. For example, in module 40002~40003 with address 1, the values of the two registers are set to 0XF003 (16-bit unsigned: 65283, 16-bit signed: -4093), 0X0007 (16-bit unsigned: 7, 16-bit signed: 7);

The host sends packets:

01	10	00	01	00	02	04
Mod	Feat	The	The	The	The	Register
ule	ure	start	start	number	number	bytes
addr	cod	address	address	of	of	
ess	es	is high	is low	register	register	
		bytes	bytes	s is high	s is low	
				bytes	in bytes	

F0	03	00	07	BO	A1	
Register	Register	Register	Register	CRC	CRC	
bytes 0	bytes 1	bytes 2	bytes 3	chec	chec	
				k	k	

Slave returns packets:

01	10	00	01	00	02	10	08
Mod	Feat	The	The	The	The	CRC	CRC
ule	ure	start	start	number	number	chec	chec
addr	cod	address	address	of	of	k	k
ess	es	is high	is low	register	register		
		bytes	bytes	s is high	s is low		
				bytes	in bytes		